Social Media Sidebar


Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.


Thomas Edison

Injectable, intelligent gel targets cancer at the source

Posted in Science on 21st Nov, 2015 12:21 AM by AlexMuller

Enlisting the body's T cells to fight off cancer is an immunotherapy technique that has shown early promise in clinical trials. But one limitation is that these cells generally lack the firepower to do the job on their own, meaning they need to be modified and reintroduced to the bloodstream to have a real impact.


Researchers may now have discovered a more efficient way forward, with the development of a T cell-loaded biogel that can be injected directly into the tumor for a more targeted, less laborious approach to immunotherapy.

Known as adoptive cell therapy (ACT), training the body's T cells to take the fight to cancerous cells has shown promise across a series of small trials involving leukemia and lymphoma patients, with scientists optimistic about where this emerging form of immunotherapy might lead.
But the current process is an involved one, requiring that the cells be collected from the blood and genetically engineered to produce special receptors on their surface, which in turn enables them to recognize particular proteins on the tumor cells.
The cells are then cultivated in the laboratory until the population reaches into the billions, before being injected back into the patient's bloodstream. Here they continue to multiply inside the body and attack the cancer cells, guided by the direction of their new engineered receptor.
The breakthrough centers around a new biogel developed by scientists at the University of Montreal Hospital Research Centre that could improve on this approach in a couple of ways. Made from a biodegradable material taken from the shells of crustaceans, and loaded with a few dozen million T cells rather than the billions needed for ACT, it remains a liquid while at room temperature.
Once injected either directly into the tumor or alongside it, it quickly takes the shape of a resistant, cohesive structure that serves as an on-site breeding ground for cancer-killing T cells – or as the researchers put it, "a cellular reservoir."
"The T lymphocytes in the gel are functional and can grow for two to three weeks, be released from the gel, and kill the cancerous cells," explained Réjean Lapointe, co-author of a study.
The researchers say that the approach can help avoid one of the side effects of ACT. A hormone called interleukin-2 is added to the T cells during the engineering to boost their effectiveness, but in high doses it can have a toxic effect.
By significantly cutting the quantity of T cells required to neutralize a tumor, the approach can avert the dangers posed by flushing these toxins through bloodstream.
The gel has only been tested in the lab so far, with the scientists putting it to work on melanoma and kidney cancer models, labelling the early experiments a success. They will now look to explore its effectiveness on animals and humans and say if those trials are successful the gel could become a tool for cancer therapy in a few years.

Tags: cancercellsresearchimmunotherapyimmune systemoncologymedicine

Read original article » Back to category


Author: Guest
Posted: 2015-11-21
ACT is very promising approach to fight cancer and further improvements like this T cell-loaded biogel that can be injected, makes it another step closer to clinical application
1 Replies
Author: Guest
Posted: 2015-11-21
It is also important to put this in context of many other efforts to improve cancer treatments - some will reach the clinic but many will not Reply


Recent headlines

  • Posted in Science on 2018-04-20 16:52:03
    Europe's Mars rover takes more
    Posted in Science on 2018-04-20 16:46:43
    Scientists discover protein behind motor neurone more
    Posted in Hardware on 2018-04-20 16:39:19
    SpaceX finally Falcon flings NASA's TESS into more
    Posted in Science on 2018-04-18 23:02:22
    Clean Energy is Happening, With or Without the more
    Posted in Science on 2018-04-18 22:56:16
    One machine to rule them all: A 'Master Algorithm' more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs, more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target more

Recent Blog Posts

  • Posted by AlexMuller
    In five years quantum computing will be more
    Posted by AlexMuller
    Google partners with Johnson and Johnson to make lower more
    Posted by AlexMuller
    Electron holography microscope with spatial resolution down more
    Posted by AlexMuller
    Lower cost advanced Nuclear power could dominate future US more
    Posted by AlexMuller
    Why Hasn’t AI Mastered Language Translation? more

Login to your Account

Login to your PlanetTech Account here

Remember me

Create a New Account

You just need username and password

The following errors occured:
Verify password:
Remember me