Social Media Sidebar

Announcement

Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

We are all now connected by the Internet, like neurons in a giant brain.

 

Stephen Hawking

 

New cancer gene-drug combinations ripe for precision medicine

RATE THIS! +35
Posted in Science on 23rd Jul, 2016 02:23 AM by AlexMuller

In an effort to expand the number of cancer gene mutations that can be specifically targeted with personalized therapies, researchers at University of California San Diego School of Medicine and Moores Cancer Center looked for combinations of mutated genes and drugs that together kill cancer cells.

 

Such combinations are expected to kill cancer cells, which have mutations, but not healthy cells, which do not. The study, published July 21 in Molecular Cell, uncovered 172 new combinations that could form the basis for future cancer therapies.

 
Most cancers have gene mutations that do one of two things, promote cell growth or prevent cell death. The first type is the target of many therapies, which inhibit cell growth. But it's much harder to develop therapies that restore malfunctioning genes that should be triggering cell death in abnormal cells, known as tumor-suppressor genes.
 
Rather than target a tumor-suppressor gene directly, Ideker and team took the approach of identifying genetic interactions between a tumor suppressor gene and another gene, such that simultaneous disruption of both genes selectively kills cancer cells.
 
The researchers first used yeast to quickly and cheaply screen 169,000 interactions between yeast versions of human tumor-suppressor genes and genes that can be inhibited with drugs, sometimes called "druggable" targets. To do this, they deleted each gene one at a time, in combination with another mutation. Those experiments whittled down the best combinations, those lethal to the yeast cells, to a few thousand.
 
Next the team prioritized 21 drugs for which the yeast druggable targets were involved in the greatest number of cell-lethal interactions. They tested these drugs one at a time for lethal interaction with 112 different tumor-suppressor gene mutations in human cancer cells growing in the lab.
 
The researchers ended up with 172 drug-gene mutation combinations that successfully killed both yeast and human cancer cells. Of these combinations, 158 had not been previously discovered.
 
Here's one example of how this information might be useful for doctors and patients: Irinotecan is a drug only indicated by the FDA for use in colon cancer. But this study suggests that this class of drugs should be evaluated for efficacy in any tumor with a mutation that inhibits RAD17, a tumor-suppressor gene that normally helps cells fix damaged DNA.
 
The next steps will be to test these combinations in more human cancer cell types and eventually in mouse models. But 172 combinations is a lot, more than a single lab can test, the researchers say. They hope other research teams will also take their list and further test each combination in a variety of conditions.
 
To help spread this information to scientists around the world, all of the data from this study has been made freely available on NDEx , a new network data-sharing resource developed by Ideker and UC San Diego School of Medicine data scientist Dexter Pratt.
 
"We've created an important translational research resource for other scientists and oncologists," said co-first author John Paul Shen, MD, clinical instructor and postdoctoral fellow at UC San Diego School of Medicine and Moores Cancer Center. "And since many of the cancer-killing interactions we discovered involve already FDA-approved drugs, it may mean they could reach clinical translation rapidly.
 
If these results are validated in subsequent testing, in the future an oncologist will have many more options for precision cancer therapy."

Tags: cancerdrughealthmedicineoncologytumorgene

Read original article » Back to category

Comments

Author: Guest
Posted: 2016-07-23
+1
Great effort! They tested drugs one at a time for lethal interaction with 112 different tumor-suppressor gene mutations in human cancer cells growing in the lab. Next thing is better models.
1 Replies
Author: Guest
Posted: 2016-07-23
+0
Indeed, since many of the cancer-killing interactions they discovered involve already FDA-approved drugs, it may mean they could reach clinical translation rapidly Reply
Reply


 

Recent headlines

  • Posted in Science on 2017-07-27 15:19:10
    Could 'cocktail geoengineering' save the climate?..read more
    Posted in Science on 2017-07-27 15:13:16
    Ketamine has 'truly remarkable' effect on depression..read more
    Posted in Science on 2017-07-27 14:59:50
    Renewable Energy Just Hit a Big Milestone..read more
    Posted in Medicine on 2017-07-26 17:05:11
    Eye test could help diagnose autism..read more
    Posted in Science on 2017-07-26 16:55:24
    Cognitive cross-training enhances learning, study finds..read more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in about.....read more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for commercial.....read more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 Downloads..read more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into new.....read more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs,.....read more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for commercial.....read more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short Sighted..read more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, but.....read more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in about.....read more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target mitochondria..read more

Recent Blog Posts

  • Posted by AlexMuller
    Nanoparticle vaccine shows potential as immunotherapy to fight.....read more
    Posted by AlexMuller
    Obesity is top cause of preventable life-years lost, study shows..read more
    Posted by AlexMuller
    Light can be utilized to control gene function..read more
    Posted by AlexMuller
    Brain stimulation restores memory during lapses, research shows..read more
    Posted by AlexMuller
    Wax worm caterpillar will eat plastic shopping bags: New.....read more

Login to your Account

Login to your PlanetTech Account here

Username:
Password:
Remember me
or

Create a New Account

You just need username and password

The following errors occured:
Username:
Email:
Password:
Verify password:
Remember me