Social Media Sidebar


Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.


Thomas Edison

Progress towards next-generation solar cells

Posted in Science on 26th Dec, 2016 09:50 PM by AlexMuller

Scientists have identified an unexpected cause of poor performance in a new class of flexible and cheap solar cells, bringing them closer to market. Cells are the building blocks of photovoltaic solar panels. They are made from light-absorbing materials that convert light into electricity. Normally the material is silicon, which has an energy-intensive manufacturing process.

In the new study, scientists looked at solar cells made from materials known as perovskites. These can be produced cheaply from chemicals mixed into printable or sprayable ink, which then crystallises to form light-absorbing films.
However, perovskite films contain charged defects that are likely to impair their performance. Slow movement of these defects is thought to be responsible for a process known as hysteresis, which leads to irregularities in the efficiency with which light is converted to electrical current.
Light-generated electricity exits the solar cell in the form of electrons to be harnessed. This is done via ‘contacts’ that sandwich the light-absorbing film. Previously, scientists have managed to remove hysteresis by using more ‘selective’ contact materials that ensure a one-way flow of electrons out of the solar cell.
In theory, changing these contact materials shouldn’t have any effect on the movement of the charged defects within the perovskite, so it has remained a mystery why this appeared to ‘fix’ the hysteresis problem.
Now researchers from Imperial College London and collaborators have developed new experiments to follow which direction electrons move in the solar cell when they are generated with a short pulse of light.
They found that the mobile charged defects are still present even in solar cells with very efficient contact materials, despite these cells showing no hysteresis. Hysteresis was only found when cells suffered the combined effects of both the defects and poor selectivity at the contacts. 
Dr Piers Barnes, from the Department of Physics at Imperial, who led the study said: “Previously there was debate over whether the charged defects or the contact materials were responsible for hysteresis. A little bit like Agatha Christie’s Murder on the Orient Express, we’ve shown that they both ‘did it’.
“The field has made amazing progress, and we’re on the right track by reducing problems with the contacts. However, the results also show that improving the contacts is only part of the solution, and we still need to be concerned about the charged defects moving inside the perovskite.”
The charged defects may provide a chemical weak point which could lead to the eventual degradation of the perovskite film. This raises a potential concern over the solar cells’ long term stability.
Dr Barnes said: “The new techniques we have designed will allow the community to assess the extent of charged defect movement to help the future research needed to improve the stability and bring this technology to market.”
Now that the causes of hysteresis have been uncovered, there are a few challenges that must be overcome before perovskite solar cells can be commercialised. One concern with current perovskites is that they contain small amounts of lead in their chemical structure. A replacement metal will probably have to be found before they are deemed safe at larger scales.
Scientists will also have to reproduce their laboratory results with life-sized solar panels. However, the crucial challenge will be to find a way of improving the long-term stability of the perovskite materials.

Tags: Solarenergyhardwarebusinessclean energy

Read original article » Back to category



Recent headlines

  • Posted in Software on 2018-06-21 03:22:47
    IBM Unveils System That 'Debates' With more
    Posted in Science on 2018-06-21 03:12:27
    NASA unveils bold new plan to protect Earth from more
    Posted in Science on 2018-06-21 03:03:04
    Machine learning may be a game-changer for more
    Posted in Science on 2018-06-20 02:26:18
    Pushing the limit: could cyanobacteria terraform Mars? more
    Posted in Medicine on 2018-06-20 02:23:08
    Hospital Begins Testing VR As A Pain Relief more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs, more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target more

Recent Blog Posts

  • Posted by AlexMuller
    In five years quantum computing will be more
    Posted by AlexMuller
    Google partners with Johnson and Johnson to make lower more
    Posted by AlexMuller
    Electron holography microscope with spatial resolution down more
    Posted by AlexMuller
    Lower cost advanced Nuclear power could dominate future US more
    Posted by AlexMuller
    Why Hasn’t AI Mastered Language Translation? more

Login to your Account

Login to your PlanetTech Account here

Remember me

Create a New Account

You just need username and password

The following errors occured:
Verify password:
Remember me