Social Media Sidebar


Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.


Thomas Edison

A functional kidney organoid from stem cells

Posted in Science on 17th Oct, 2015 01:11 AM by AlexMuller

An organ is similar to a machine. Organs contain many interacting parts that must be positioned in a specific configuration to work properly. Getting all the right cell types in the appropriate locations is a real challenge. Recently, a team of scientists has met that challenge by using stem cells to grow an organoid that resembles a developing kidney.

Our kidneys filter our blood, allowing us to remove harmful toxins without eliminating important chemical building blocks and nutrition sources. Kidneys do this by passing our blood through features called nephrons, complex tubular structures that extend deep within the organ. These tubes create concentration gradients that drive for the exchange of molecules in and out of the blood.
The function of nephrons can be attributed to their complex architecture, containing relatively straight tubes (distal and proximal), a U-shaped bend (loop of Henle), and an interconnecting micro-tubular network (glomeruli). The challenge has been to figure out a way to start with a single population of stem cells and direct them to form all these structures.
Previously, scientists have used stem cells to grow the tubes that filter the blood (nephrons) and the tubes that send fluids to the bladder (collecting ducts). This is more challenging than it seems, as both these structures arise from the same embryonic tissue, yet they originate at distinct times and positions in a growing embryo.
In order to better understand what’s happening here, the team first performed an analysis of the mechanisms that enable a stem cell to preferentially transform into either a collecting duct or a nephron. They found that the amount of time cells are exposed to specific signaling molecules (such as retinoic acid, FGF9, and Wnts) influences the fate of the stem cells.
Using this information, the scientists were able to control the relative ability of the cells to transform into either the nephron or the collecting duct. They started with either human embryonic stem cells or human induced pluripotent stem cells and exposed them to a series of signaling molecules over the course of a week, then cultured the cells for up to 20 days. Over this time period, the cultures spontaneously formed complex kidney-like tissues called organoids.
Further examination of the kidney organoid revealed that they contain individual nephrons with distinct distal and proximal tubules, early loops of Henle, and other key structures. When the genes that are active in these kidney organoids were compared to those active in human fetal tissue, they showed the highest resemblance with a first trimester human kidney.
While these kidney organoids are not yet ready to transplant into adolescents or adults, they can serve as a powerful tool to screen drugs for kidney toxicity or model diseases. This in turn could help develop more effective therapeutics that could lower the risk of a patient landing on the kidney transplant list in the first place.

Tags: organkidneytransplantmedicinesurgerycellstem cellbiotechnologyresearch

Read original article » Back to category


Author: Guest
Posted: 2015-10-17
Great progress! Regenerative medicine and stem cells are having a great impact on research and future treatments. I agree that at this point one of most valuable application of this kidney organoid is for drug testing that could be much more informative and a better way compared to animals
1 Replies
Author: Guest
Posted: 2015-10-17
It is also encouraging that the next step could be kidneys for transplants that would make such an enormous difference and bypass donor limitation Reply


Recent headlines

  • Posted in Online on 2018-05-27 15:31:10
    SpaceX’s prototype internet satellites are good more
    Posted in Medicine on 2018-05-27 15:24:22
    Drug Discovery Accelerated By Using Deep Neural more
    Posted in Software on 2018-05-26 01:48:47
    From Here to Human-Level AGI in Four Simple more
    Posted in Science on 2018-05-26 01:41:34
    Research Team Builds a Brain Model Neuron By more
    Posted in Hardware on 2018-05-24 04:45:19
    30% Efficiency Solar more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs, more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target more

Recent Blog Posts

  • Posted by AlexMuller
    In five years quantum computing will be more
    Posted by AlexMuller
    Google partners with Johnson and Johnson to make lower more
    Posted by AlexMuller
    Electron holography microscope with spatial resolution down more
    Posted by AlexMuller
    Lower cost advanced Nuclear power could dominate future US more
    Posted by AlexMuller
    Why Hasn’t AI Mastered Language Translation? more

Login to your Account

Login to your PlanetTech Account here

Remember me

Create a New Account

You just need username and password

The following errors occured:
Verify password:
Remember me