Social Media Sidebar

Announcement

Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

'By far the greatest danger of Artificial Intelligence is that people conclude too early that they understand it'

 

Eliezer Yudkowsky

UCLA physicist tests theories of dark energy by mimicking the vacuum of space

RATE THIS! +27
Posted in Science on 23rd Aug, 2015 06:55 PM by AlexMuller

Besides the atoms that make up our bodies and all of the objects we encounter in everyday life, the universe also contains mysterious dark matter and dark energy. The latter, which causes galaxies to accelerate away from one another, constitutes the majority of the universe's energy and mass.

 

Ever since dark energy was discovered in 1998, scientists have been proposing theories to explain it, one is that dark energy produces a force that can be measured only where space has a very low density, like the regions between galaxies. Paul Hamilton, a UCLA assistant professor of physics and astronomy, reproduced the low-density conditions of space to precisely measure this force. His findings, which helped to reveal how strongly dark energy interacts with normal matter, appear today in the online edition of the journal Science.

 

Hamilton's research focuses on the search for specific types of dark energy fields known as "chameleon fields," which exhibit a force whose strength depends on the density of their surrounding environment. This force, if it were proven to exist, would be an example of a so-called "fifth force" beyond the four known forces of gravity, electromagnetism, and the strong and weak forces acting within atoms.
 
But this fifth force has never been detected in laboratory experiments, which prompted physicists to propose that when chameleon fields are in dense regions of space, for example, the Earth's atmosphere,they shrink so dramatically that they become immeasurable.
 
Chameleon fields were first hypothesized in 2004 by Justin Khoury, a University of Pennsylvania physicist and co-author of the Science paper, but it wasn't until 2014 that English physicist Clare Burrage and colleagues proposed a methodology for testing their existence in a laboratory using atoms.
 
At the time, Hamilton was a postdoctoral researcher in the UC Berkeley laboratory of Holger Müller. His team already had a head start on investigating chameleon fields: They had independently developed an experiment using atoms to measure small forces.
 
Detecting the force of chameleon fields requires replicating the vacuum of space, Hamilton explained, because when they are near mass, the fields essentially hide. So the physicists built a vacuum chamber, roughly the size of a soccer ball, in which the pressure was one-trillionth that of the atmosphere we normally breathe. The researchers inserted atoms of cesium, a soft metal, into the vacuum chamber to detect forces.
 
"Atoms are the perfect test particles; they don't weigh very much and they're very small," Hamilton said.
 
They also added to the vacuum chamber an aluminum sphere roughly the size of a marble, which functioned as a dense object to suppress the chameleon fields and allow the researchers to measure small forces. The atoms were then cooled to within 10 one-millionths of a degree above absolute zero, in order to keep them still enough for the scientists to perform the experiment.
 
Hamilton and his team collected data by shining a near-infrared laser into the vacuum chamber and measuring how the cesium atoms accelerated due to gravity and, potentially, another force.
 
"We used a light wave as a ruler to measure the acceleration of atoms," Hamilton said. This measurement was performed twice: once when the aluminum sphere was close to the atoms and once when it was farther away. According to scientific theory, chameleon fields would cause the atoms to accelerate differently depending on how far away the sphere was.
 
The researchers found no difference in the acceleration of the cesium atoms when they changed the location of the aluminum sphere. As a result, the researchers now have a better understanding of how strongly chameleon fields can interact with normal matter, but Hamilton will continue to use cold atoms to investigate theories of dark energy. His next experiment will aim to detect other possible forms of dark energy that cause forces that change with time.

Tags: spacephysicsdark matterdark energycosmology

Read original article » Back to category

Comments

Author: Guest
Posted: 2015-08-24
+1
Indeed, we need to shed more light on this dark matter.... Reply
Author: Guest
Posted: 2015-08-24
+0
Indeed, we need to shed more light on this dark matter.... Reply


 

Recent headlines

  • Posted in Science on 2017-03-22 07:41:30
    'Smallsats' open up new planetary frontier..read more
    Posted in Science on 2017-03-22 07:36:45
    Trump signs NASA funding bill, sets goal of human on Mars..read more
    Posted in Medicine on 2017-03-22 07:30:04
    A Groundbreaking Stem Cell Treatment Just Prevented a.....read more
    Posted in Hardware on 2017-03-21 18:16:58
    Improved materials for interfacing neural tissue with.....read more
    Posted in Science on 2017-03-21 18:11:10
    SpaceX to make history by re-flying orbital rocket..read more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in about.....read more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for commercial.....read more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 Downloads..read more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into new.....read more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs,.....read more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for commercial.....read more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short Sighted..read more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, but.....read more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in about.....read more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target mitochondria..read more

Recent Blog Posts

  • Posted by AlexMuller
    Intensive medical treatment can reverse type 2 diabetes..read more
    Posted by AlexMuller
    Daily consumption of tea protects the elderly from cognitive.....read more
    Posted by AlexMuller
    New analysis method of metabolites accurately predicts whether.....read more
    Posted by AlexMuller
    Unproven stem cell 'therapy' blinds three patients at Florida.....read more
    Posted by AlexMuller
    Indigenous South American group has healthiest arteries of all.....read more

Login to your Account

Login to your PlanetTech Account here

Username:
Password:
Remember me
or

Create a New Account

You just need username and password

The following errors occured:
Username:
Email:
Password:
Verify password:
Remember me