Wireless brain sensor could unchain neuroscience from cables

In a study in the journal Neuron, scientists describe a new high data-rate, low-power wireless brain sensor. The technology is designed to enable neuroscience research that cannot be accomplished with current sensors that tether subjects with cabled connections.
 
Experiments in the paper confirm that new capability. The results show that the technology transmitted rich, neuroscientifically meaningful signals from animal models as they slept and woke or exercised.
 
“We view this as a platform device for tapping into the richness of electrical signals from the brain among animal models where their neural circuit activity reflects entirely volitional and naturalistic behavior, not constrained to particular space,” said Arto Nurmikko, professor of engineering affiliated with the Brown Institute for Brain Science and the paper’s senior and corresponding author. “This enables new types of neuroscience experiments with vast amounts of brain data wirelessly and continuously streamed from brain microcircuits.”
 
The custom-engineered neuroelectronic platform is composed of two elements: a 100-channel transmitter only 5 centimeters in its largest dimension and weighing only 46.1 grams, and a four-antenna receiver that looks like a home Wi-Fi router but employs sophisticated signal processing to maximize the transmitter’s signal while the subject is moving around.
 
Via a small port embedded in a subject’s skull, the transmitter connects to a tiny implanted electrode array that detects the activity of scores of neurons in the cortex. The wireless transmitter is compatible with multiple types and classes of brain sensors, Nurmikko said, with a view toward future sensor development