Big Multiple Sclerosis Breakthrough

A phase 1 clinical trial for the first treatment to reset the immune system of multiple sclerosis (MS) patients showed the therapy was safe and dramatically reduced patients’ immune systems’ reactivity to myelin by 50 to 75 percent, according to new Northwestern Medicine research.
 
In MS, the immune system attacks and destroys myelin, the insulating layer that forms around nerves in the spinal cord, brain and optic nerve. When the insulation is destroyed, electrical signals can’t be effectively conducted, resulting in symptoms that range from mild limb numbness to paralysis or blindness.
 
“The therapy stops autoimmune responses that are already activated and prevents the activation of new autoimmune cells,” said Stephen Miller, the Judy Gugenheim Research Professor of Microbiology-Immunology at Northwestern University Feinberg School of Medicine.  “Our approach leaves the function of the normal immune system intact. That’s the holy grail.”
 
Miller is the co-senior author of a paper on the study, which was published June 5 in the journal Science Translational Medicine. The study is a collaboration between Northwestern’s Feinberg School, University Hospital Zurich in Switzerland and University Medical Center Hamburg-Eppendorf in Germany.
 
The human trial is the translation of more than 30 years of preclinical research in Miller’s lab.  
 
In the trial, the MS patients’ own specially processed white blood cells were used to stealthily deliver billions of myelin antigens into their bodies so their immune systems would recognize them as harmless and develop tolerance to them.   
 
Current therapies for MS suppress the entire immune system, making patients more susceptible to everyday infections and higher rates of cancer.
 
While the trial’s nine patients — who were treated in Hamburg, Germany — were too few to statistically determine the treatment’s ability to prevent the progression of MS, the study did show patients who received the highest dose of white blood cells had the greatest reduction in myelin reactivity.
 
The primary aim of the study was to demonstrate the treatment’s safety and tolerability. It showed the intravenous injection of up to 3 billion white blood cells with myelin antigens caused no adverse affects in MS patients. Most importantly, it did not reactivate the patients’ disease and did not affect their healthy immunity to real pathogens.
 
As part of the study, researchers tested patients’ immunity to tetanus because all had received tetanus shots in their lifetime. One month after the treatment, their immune responses to tetanus remained strong, showing the treatment’s immune effect was specific only to myelin.