Multiverse evidence from Higgs Boson Details

With the discovery of only one particle, the LHC experiments deepened a profound problem in physics that had been brewing for decades. Modern equations seem to capture reality with breathtaking accuracy, correctly predicting the values of many constants of nature and the existence of particles like the Higgs. Yet a few constants — including the mass of the Higgs boson — are exponentially different from what these trusted laws indicate they should be, in ways that would rule out any chance of life, unless the universe is shaped by inexplicable fine-tunings and cancellations.
 
The LHC will resume smashing protons in 2015 in a last-ditch search for answers. But in papers, talks and interviews, Arkani-Hamed and many other top physicists are already confronting the possibility that the universe might be unnatural. (There is wide disagreement, however, about what it would take to prove it.)
 
“Ten or 20 years ago, I was a firm believer in naturalness,” said Nathan Seiberg, a theoretical physicist at the Institute, where Einstein taught from 1933 until his death in 1955. “Now I’m not so sure. My hope is there’s still something we haven’t thought about, some other mechanism that would explain all these things. But I don’t see what it could be.”
 
Physicists reason that if the universe is unnatural, with extremely unlikely fundamental constants that make life possible, then an enormous number of universes must exist for our improbable case to have been realized. Otherwise, why should we be so lucky? Unnaturalness would give a huge lift to the multiverse hypothesis, which holds that our universe is one bubble in an infinite and inaccessible foam. According to a popular but polarizing framework called string theory, the number of possible types of universes that can bubble up in a multiverse is around 10^500. In a few of them, chance cancellations would produce the strange constants we observe.
 
Either we live in an overcomplicated but stand-alone universe, or we inhabit an atypical bubble in a multiverse.
 
The Higgs boson has a mass of 126 giga-electron-volts, but interactions with the other known particles should add about 10,000,000,000,000,000,000 giga-electron-volts to its mass. This implies that the Higgs’ “bare mass,” or starting value before other particles affect it, just so happens to be the negative of that astronomical number, resulting in a near-perfect cancellation that leaves just a hint of Higgs behind: 126 giga-electron-volts.
 
Physicists have gone through three generations of particle accelerators searching for new particles, posited by a theory called supersymmetry, that would drive the Higgs mass down exactly as much as the known particles drive it up. But so far they’ve come up empty-handed.
 
The upgraded LHC will explore ever-higher energy scales in its next run, but even if new particles are found, they will almost definitely be too heavy to influence the Higgs mass in quite the right way. The Higgs will still seem at least 10 or 100 times too light. Physicists disagree about whether this is acceptable in a natural, stand-alone universe. “Fine-tuned a little — maybe it just happens,” said Lisa Randall, a professor at Harvard University. But in Arkani-Hamed’s opinion, being “a little bit tuned is like being a little bit pregnant. It just doesn’t exist.”