Researchers at Baylor College of Medicine and the Broad Institute of MIT and Harvard and clinicians at Washington University in St. Louis have identified biological markers in triple negative breast cancer (TNBC) that are associated with resistance to chemotherapy treatment. The study is published in the journal Cancer Discovery and was funded by the National Cancer Institute’s Clinical Proteomics Tumor Analysis Consortium (CPTAC).
“TNBC is the most difficult to treat form of breast cancer, with standard treatment requiring multiple chemotherapy drugs that unfortunately often fail to cure the patient,” said first and co-corresponding author Dr. Meenakshi Anurag, assistant professor of medicine at the Lester and Sue Smith Breast Center at Baylor. “It is imperative that we develop approaches to predict response so that only effective treatments are given. Furthermore, patients who don’t respond to standard drugs need entirely new treatment approaches. The discovery of therapeutic alternatives will depend on new insights into how TNBC arises.”
The research team used an innovative analytic approach called “microscaled proteogenomics” that they previously developed (Satpathy et al, 2020) to analyze tumor biopsies taken from TNBC patients prior to treatment with carboplatin and docetaxel combination chemotherapy. Data from standard DNA and RNA sequencing approaches were integrated with mass spectrometry-based proteomics and phosphoproteomic analyses to derive more complete molecular portraits of treatment-responsive versus treatment-resistant tumors.
“The proteomic analysis of pretreatment biopsies uniquely revealed metabolic pathways that were associated with resistance to treatment, including fatty acid metabolism,” said Anurag, also a member of Baylor’s Dan L Duncan Comprehensive Cancer Center. When the team considered both proteomics and gene expression data together, they observed that sensitivity to chemotherapy was marked by higher DNA repair signatures, interferon gamma signaling and immune checkpoint components. These data suggest a multi-omics predictor for chemotherapy response is within reach.
The team then conducted analyses that triangulated treatment response, chromosomal deletion or gain and concordant decreases or increases in mRNA and protein expression. This led the team to determine that a deletion on chromosome 19, located in a region called 19q13.31-33, was associated with resistance to chemotherapy treatment. Of the hundreds of genes deleted in this location, expression of the DNA ligase gene LIG1 was one of the mostly consistently suppressed genes at both the mRNA and protein level. In model systems, and in other TNBC data sets, loss of expression and/or deletion of LIG1 was associated with selective carboplatin resistance and poor clinical outcome.
“LIG1 loss was also associated with poor prognosis in other cancer types, showing that this deletion has broader clinical significance,” Anurag said. The researchers are currently working on clinical grade assays to confirm that LIG1 loss can be safely used to direct carboplatin chemotherapy in TNBC.
Dr. Matthew Ellis, a McNair Scholar at Baylor and director of the Lester and Sue Smith Breast Center at the time of this research, and Dr. Steve Carr, senior director of the Proteomics Platform and an institute scientist at Broad, who together orchestrated the analysis, said, “This groundbreaking study clearly reveals the power of combining microscaled proteogenomic analyses with careful clinical research to produce new insights into the nature of cancer.”