New research has found variable voltages in the membranes of breast cancer cells, revealing clues about how they grow and spread.
The research, led by Imperial College London and The Institute of Cancer Research, London, could help us better understand how cancer cells ‘decide’ when to multiply and where to spread to.
When cells become cancerous, they undergo a series of bioelectric changes. For example, the layer surrounding cells, called the cell membrane, becomes more positively charged than healthy cell membranes.
This new research, published today in Communications Biology, found that as well as the membrane voltage being higher than in healthy cells, it also fluctuates over time, with breast cancer cells behaving much like neurons.
The researchers believe this could indicate an electrical communications network between cancer cells that could in future be a target for disruption, creating possible new treatments.
Co-lead author Dr Amanda Foust, from Imperial’s Department of Bioengineering, said: “When healthy cells become cancerous, the changes they undergo can help them to grow and spread. We know, for example, that certain genes that control cell multiplication can switch off, causing uncontrolled cell growth.
“We don’t yet know why the voltage of membranes fluctuates in cancer cells but our discovery and technology, enabled by the exciting collaboration of engineers and biologists, opens doors to further work that could help us better understand cancer signalling networks and growth.”