The notion of wearing lenses over our eyes to correct our vision dates back hundreds of years, with some even crediting Leonardo da Vinci as one of the first proponents of the idea (though that remains somewhat controversial). Material science and our understanding of the human eye have come a long way since, while their purpose has remained largely the same. In the age of wearable computers, however, scientists in the laboratories of DARPA, Google, and universities around the world see contact lenses not just as tools to improve our vision, but as opportunities to augment the human experience. But how? And why?
As a soft, transparent disc of plastic and silicone that you wear on your eyeball, a contact lens may seem like a very bad place to put electronics. But if you look beneath the surface, the idea of a smart contact lens has real merit, and that begins with its potential to improve our well-being.
Over the past decade or so, scientists have made great advances with technologies that can provide different measures of our health by sampling our bodily fluid. Sweat is a great example of this.
Researchers around the world are working on patches equipped with sensors and electronics that can be worn on the skin to analyze the makeup of our sweat, working out which chemicals are present and which ones are not.
In doing so, these patches could tell us when our stress levels are skyrocketing, when lactate levels are on the rise during exercise or tell diabetics when blood-sugar is at dangerous levels. Some could even automatically release diabetes drugs in response.
And the same premise applies when it comes to our eyes. More specifically, the fluid that flows through our tear ducts and other glands to keep them moist. This oily liquid also contains valuable biomarkers that can be used to track well-being, with blood-sugar levels a leading example.
This promise of a non-invasive way to monitor blood-sugar levels through the eye has drawn huge interest from research groups and private companies alike. Back in 2014, Google announced it was working on a contact lens featuring a wireless chip and miniaturized glucose sensor embedded between two layers of traditional contact lens material.